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SST Biases for DJF
Biases from 4 independent coupled systems
included in the EUROSIP multi-model
(1996-2009)
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Assessing spatial errors :

leading modes of rainfall variability
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Figure 5.2.1 Left: Rainfall EOF-1 for Wesr Africa from GPCP dara. Cenmre: Wesr Africa EOF-1
frop) and EQF-2 (bortrom) from S3. Right: EOF-1 (top) and EQOF-2 (bortom) from §4. The EOF

domain is delimited by the grey box, shaded values are anomalies corresponding to 1 PC standard
deviation.Correlation with GPCP EOF-1 is listed above each model EOF.
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Bias correction

® Model drift is typically comparable to signal
Both SST and atmosphere fields

® Forecasts are made relative to past model
Integrations

Model climate estimated from 30 years of forecasts (1981-2010), all of
which use a 15 member ensemble. Thus the climate has 450 members.

Model climate has both a mean and a distribution, allowing us to estimate
e.g. tercile boundaries.

Model climate is a function of start date and forecast lead time.

EXCEPTION: Nino SST indices are bias corrected to absolute values, and
anomalies are displayed w.r.t. a 1971-2000 climate.

® Implicit assumption of linearity

We implicitly assume that a shift in the model forecast relative to the

model climate corresponds to the expected shift in a true forecast relative

to the true climate, despite differences between model and true climate.

Most of the time, assumption seems to work pretty well. But not always.
S~ ECMWF



NINO3.4 mean SST drift
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Nino plumes: variance scaling

Model Nino SST anomalies in S4 have too large amplitude

Problem is especially acute in boreal spring and early summer (model
bias of “permanent La Nina” does not allow spring relaxation physics to
apply; this was something S3 did very well)

We plot the “Nino plumes” corrected for both mean and variance, instead
of just the mean.

This is done by scaling the model anomalies so that the model variance
matches the observed variance in the calibration period

We use the same approach (cross-validated) when calculating scores

This affects the plotting, not the model data itself

The spatial maps are not affected: the tercile and quintile probability maps
are already implicitly standardized wrt model variance

General technique : is also used in our multi-model system

e LRF Training, Belgrade 13 t - 16t November 2013 S ECMWF



NINO3 SST anomaly plume
ECMWTF forecasts from 1 Nov 2007

Monthly mean anomalies relative to NCEP adjusted ON2 1971-2000 climatology
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2. Measuring seasonal forecast skill

O A set of verification scores for deterministic and probabilistic forecast
should be used.

O There is no single metric that can fully represent the quality of the
probabilistic forecasts.

O The robustness of verification statistics is always a function of the
sample size. WMO —-SVSLRF suggests 20 years.

O Typically verification is performed in cross-validation mode.

O The skill depends strongly on the season, so forecasts evaluated
separately for different starting months.
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SST deterministic scores
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Figure4.1.1. 54 (red) and S3 (blue) NINO3 and NINO3.4 SS5T scores for the 30 yvear re-forecast

period. S4 has decreased ervor (solid line) and increased ensemble spread (dashed line).
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2m temp grid-point anomaly correlation

Sys 4

JJA month 2-4

Sys 3

Near-surface alr lemperaluns
Hindeast perod 1221-2010 with start in May average over months 2 o 4
Black dots For values significantly different from zero with 352 confidance | 1000 samplas)

am ax ar o o a3 nx na o n= o s

MNear-surfdce alr temperature
Hindcast pedod 1281-2010 with stast in May average overmonths 2 1o 4
Biack dots for values significantly differart from zerowith 205% corfidence | 1000 samplas)

-1 am -ax ar o o <a aa am o nw o

o
1

£.2.1: Ensemble-mean anomaly correlation for 2m_T in JJA: 54 (top), S3 (bottom).
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Roc skill score

RICC Shill Score for OPReanfEXs=dSY 00l with 15 ermermble members ond 18 bins
Meor-murface air eermperature aomalies above the upper terdle
Hindcast period 198 1-2010 with start in May ond averaging period 2 o +

Threshold computed ranking the sample
Bilack dot=Forvalues significartly dif erent From zemo with 95% confidence | 1000 samples)
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Reliability diagrams

JJA 2m temp upper tercile
Tropical band Europe
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3. Important issues for skill assessment

® The limitation associated with the sample
size

e LRF Training, Belgrade 13 t - 16t November 2013 S ECMWF



The limitation associated with the
sample size
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Sensitivity to the re-forecast period
over Europe (but see later!)

JJA - Reliability for 2m temp anomaly in the upper tercile
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Seasonal forecast skill assessment:

® The effect of long term trend
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The effect of long term trend in the
sample

O The surface air temperature during the last 30 years exhibits a
warming trend.

O This global warmth in the last decades is a continuation of the upward
warming trend observed since the mid-20 century in response to the
increase of GHGs.

O Correct GHGs are important for seasonal forecast systems
(Doblas-Reyes at al. 2006, Liniger et al. 2007, Cai et al. 2009)

O In the skill assessment can we distinguish the ability of reproducing
the effect of climate change from the ability of predicting the year-to-
year variations of anomalies?
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Verification with a moving climate to

filter out the effects of long term
trenda:

2m temp analysis averaged over SEUR (35N - 50N , 10W -40E)
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LONG TERM TRENDS surface temp

Normalized slope of lin. trend (%) for ERA40/OPS an alyS|S
Surface temperature

Hindcast period 1981-2005 with start in May and averaging period 2 to 4

1 2 3 4 5 6 7 8 9 1I0 1I1 1I2 1I3 1I4 1I5 1I8 1I? 1I8 1I9 2I0 2I1 2I2 2I3 2I4 EJS
November 2013 ZSECMWF



Seasonal forecast skill assessment:

® The effect of ensemble size
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Compensating for ensemble size?

Mdaller et al. 2005 and Weigel et al. 2007
suggested the use of a de-biased Brier
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S4 extended hindcast set

T850 Anom. correlation S4(15)-ERA Int 1981-2010DJF
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S4 extended hindcast set

Z500 Anom. correlation S4(15)-ERA Int 1981-2010DJF

Z500 Anom. correlation S4(41)-ERA Int 1981-2010DJF
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4. EUROSIP calibrated products

® A European multi-model seasonal forecast system

O Operational since 2005
O Data archive and real-time forecast products

O Initial partners: ECMWF, Met Office, Météo-France
O NCEP an Associate Partner; forecasts included since 2012

O Products released at 12Z on the 15t of each month
O Aim is a high guality operational system

O Data policy issues are always a factor in Europe
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Error vs spread (uncalibrated)

NINO3.4 SST rms errors

99 start dates from 19990201 to 20091201, amplitude scaled
Ensemble size is 50
95% confidence interval for MM , for given set of start dates
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Calibrated p.d.f.

® ENSO forecasts have good past performance data

We can calibrate forecast spread based on past performance
We can also allow varying weights for models
We have to be very careful not to overfit data at any point.

® Represent forecast with a p.d.f.

This is the natural output of our calibration procedure
Easier visual interpretation by user

@ Calibration and combination in general case

Ideally apply similar techniques to all forecast values (T2m maps etc)
More difficult because less information on past (higher noise levels)
Hope to get there eventually ..... :
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Anomaly (deg C)

Nino 3.4 plume and p.d.f.

NINO3.4 SST anomaly plume
EUROSIP multi-model forecast from 1 Nov 2011

ECMWEF, Met Office, Meteo-France, NCEP
Monthly mean anomalies relative to NCEP adjusted Olv2 1971-2000 climatology

—— Multi-model anomalies
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NINO3

4 SST anomaly pdf

EURQOSIP multi-model forecast from 1 Nov 2011

ECMWEF, Met Office, Meteo-France, NCEP
Percentiles at 2%, 10%, 25%, 50%, 75%, 90% and 98%
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P.d.f. interpretation

e P.d.f. based on past errors

The risk of a real-time forecast having a new category of error is not
accounted for. E.g. Tambora volcanic eruption.
We plot 2% and 98%ile. Would not go beyond this in tails.

Risk of change in bias in real-time forecast relative to re-forecast.

® Bayesian p.d.f.

Explicitly models uncertainty coming from errors in forecasting system
Two different systems will calculate different pdf’'s — both are correct

@ VValidation

Rank histograms show pdf’s are remarkably accurate (cross-validated)

Verifying different periods shows relative bias of different periods can
distort pdf — sampling issue in our validation data.
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